Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study
نویسندگان
چکیده
The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors.
منابع مشابه
Down-regulation of microRNA-182 and microRNA-183 predicts progression of osteosarcoma
Introduction The aim of this study was to investigate the expression levels of microRNA-182 and microRNA-183 and their association with clinicopathological features in patients with osteosarcoma. Material and methods Total RNA was purified from samples and noncancerous bone tissues and then quantitative real-time polymerase chain reaction was applied to evaluate the expression levels of micro...
متن کاملMicroRNA-182 downregulates Wnt/β-catenin signaling, inhibits proliferation, and promotes apoptosis in human osteosarcoma cells by targeting HOXA9
We investigated the mechanisms by which microRNA (miR)-182 promotes apoptosis and inhibits proliferation in human osteosarcoma (OS) cells. Levels of miR-182 and Homeobox A9 (HOXA9) expression were compared between human OS and normal cells. Subjects were divided into OS and normal groups. We analyzed the target relationship of miR-182 and Homeobox A9 (HOXA9). Cells were then assigned into blank...
متن کاملMolecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells
Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...
متن کاملMolecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells
Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کامل